
Situation

Measuring network traffic, is a common task in network
management. The reason behind network measuring can be
various: It's easier to fix a malfunctioning network that's been
monitored, redesigning a network requires a good insight of the
running processes over the network, a virus outbreak or a network
attack over the network must be detected, firewall rules or
network accounting over a running network has to be
implemented, and other reasons.
Classic well-known tools like MRTG, RRDTool are good for
most basic network interface traffic measurement, but for some
these tools are not enough.

Here I describe a Netflow network monitoring framework using
the open source tools Flow-Tools, FlowScan and JKFlow. These
tools provides a network traffic measurement infrastructure with
detailed online graphing and scoreboard capabilites.

FlowScan

FlowScan is a collection of Perl scripts programmed by Dave
Plonka of University of Wisconsin, Madison. In using Netflow the
role of data collection is done by the router sending netflow
datagrams (short called 'flows') to a netflow collector. The
collector saves these flows in 'flowfiles'. Usually these files will
consume a lot of diskspace over time and the needed information
has to be extracted. Using a 'report module' FlowScan processes
every flowfile and creates the reports needed .

FlowScan supports with the Cflow module multiple flow formats
like argus, cflowd, flow-tools, and lfapd. The Fprobe tool using
pcap library makes flow measurement also possible on Unix
hosts, so you are not restricted to Cisco routers.

FlowScan depends on these tools & perl modules:

� Korn Shell (only if you use CampusIO/SubnetIO)
� RRDTool + RRDs shared library
� Cflow
� Boulder::Stream
� ConfigReader::Directivestyle
� HTML::Table
� Net::Patricia
� Flow-Tools' flow-capture or cflowd

On the FlowScan website the collector cflowd is proposed, but
lacking support of gcc 3.x, makes flow-capture from Flow-Tools,
a package by Mark Fullmer, now the recommended solution.

Motivation

In my study for ACE graduate Telecom at GroepT Leuven,
Belgium, I was facing a FlowScan setup using Netflow on a few
core routers on a Corporate European hub site. Because site-to-
site reporting of services was needed, I looked both at the
included CampusIO report module for reporting on services, and
the SubnetIO module for subnet reporting. After some inspection
of the code I saw I couldn't combine these modules because they
do not work together. Possible solutions to this problem like
running multiple FlowScan processes on filtered flows, or using a
different report module, were evaluated. In my search for a better
report module I've found CUFlow, written by Matt Selsky and
Johan Andersen of Columbia University. While this tool provides
excellent reporting on services for different routers, and has a
user friendly web interface, this still didn't solved my site-to-site
reporting problem. To solve my problem I've decided to
program JKFlow, not only to solve my problem but also to
provide a new generic reporting module to the open source
community. Thanks to the feedback from the community JKFlow
has improved a lot.

JKFlow report module

JKFlow is a generic report module and very flexible to configure
using a XML configuration file. To setup JKFlow just copy
JKFlow.pm, JKFlow.xml to the location where you've installed
FlowScan, copy JKGrapher.pl to the web-cgi directory of your
webserver and edit JKFlow.xml. The next picture shows some of
the basic concepts and entities of JKFlow.

JKFlow sites, direction entities

��������	�
�����
�����
��������
��
�
������

Jurgen Kobierczynski

� Sites/Subnets define source/destination subnets and are used
in directions, which combine 2 Sites/Subnets pairs.

� Directions selects flows with matching source/destination
sites/subnets, inside these directions you define traffic pattern
to monitor.

� Outbound traffic matches source address matching with 'from'
Subnets/Sites and destination address with 'to' Subnets/Sites.
Inbound matches otherwise.

� You can monitor multiple Directions, within each Direction
you can specify traffic patterns to monitor like applications,
services, protocols, total & scoreboarding, but you can also
specify Sets.

� Sets are grouping of traffic patterns to watch. You can reuse
Sets over multiple Directions.

Here is a very basic JKFlow.xml file. Most of the configuration
file is self explaining:

Example 1 JKFlow.xml file

<config>
 <definesets>
 <defineset name="Common Services">
 <application name="web">80/tcp,443/tcp</application>
 <application name="mail">110/tcp,143/tcp</application>
 <application name="dns">53/udp,53/tcp</application>
 <protocols>tcp,udp,icmp</protocols>
 <services>22-23/tcp,25/tcp,102/tcp,119/tcp</services>
 <total/>
 </defineset>
 <defineset name="Scoreboarding">
 <scoreboard>
 <report count="12" hostsbase="AggHost1H" portsbase="AggPort1H"/>
 <report count="72" hostsbase="AggHost6H" portsbase="AggPort6H"/>
 </scoreboard>
 </defineset>
 </definesets>
 <sites>
 <site name="Belgium" subnets="10.10.0.0/16"/>
 <site name="Holland" subnets="10.20.0.0/16"/>
 <site name="England" subnets="10.30.0.0/16"/>
 <site name="Internet" subnets="0.0.0.0/0"/>
 </sites>
 <directions>
 <direction name="Belgium-Int" from="Belgium" to="Internet" noto="Belgium">
 <set name="Common Services"/>
 <set name="Scoreboarding"/>
 </direction>
 <direction name="Belgium-Holland" from="Belgium" to="Holland">
 <set name="Common Services"/>
 <set name="Scoreboarding"/>
 </direction>
 <direction name="Belgium-England" from="Belgium" to="England">
 <set name="Common Services"/>
 <set name="Scoreboarding"/>
 </direction>
 </directions>
 <rrddir>/var/flows/reports/rrds</rrddir>
 <scoredir>/var/flows/score</scoredir>
 <sampletime>300</sampletime>
</config>

What JKFlow actually does at the startup of FlowScan it will
create several directories under rrddir named after the directions

specified in JKFlow.xml. In each directory it will automatically
create the necessary RRDTool files for the specified traffic
patterns. FlowScan processes all flow files, with each it will
updates the values in RRDTool files, and remove the processed
file. A second set of directions under scoredir is created and
inside each directory aggregate scoreboard HTML files are
created.

This basic configuration works for scenarios with a single central
core router, passing all network traffic. Often this is not the case,
and multiple routers are deployed, with each routing some of the
subnets/sites network traffic. The first example use 3 routers and
all are exporters. Netflow doesn't provide a correlation of the
flows between the exporters. How do you prevent over counting
correlating flows from different exporters, while still monitoring
all networks?

Because users were reporting this problem, this showed me that
that direction matching on subnets alone does not work in the real
world. To make JKFlow really useful, I've also included an 'edge'
monitoring design. With a 'edge' approach, you assume network
traffic will not pass multiple links to a network. Take the case of 2
redundant fail-back routers. Network traffic can pass both routers,
but they pass a single link to the outside world.

This 'edge' approach is can be done using 'routergroups'.
Routergroups groups multiple router interfaces or routers, and a
direction with a routergroup selects all network traffic passing
any router interface included within the routergroup.

In the following picture is a common scenario involving
redundant lines and routers between a central site and 2 hub sites:

JKFlow routergroup entities

You'll have to combine the 4 lines traffic over the redundant
routers of a site. This could be easily done using subnet-to-subnet
directions, if all network traffic passes a single router of the sites
redundant pair only. In the case this is not possible, you will have
to use routergroup based directions.

Here below is the JKFlow.xml configuration file:

Example 2 JKFlow.xml file

<config>
 <definesets>
 <defineset name="Common Services">
 <application name="web">80/tcp,8080/tcp,443/tcp</application>
 <application name="mailreading">110/tcp,143/tcp</application>
 <application name="dns">53/udp,53/tcp</application>
 <services>22-23/tcp,25/tcp,102/tcp,119/tcp</services>
 <protocols>tcp,udp,icmp</protocols>
 <ftp/>
 <multicasts/>
 <tos/>
 <total/>
 </defineset>
 </definesets>
 <routergroups>
 <routergroup name="ROUTERGROUP1">
 <router exporter="10.2.2.2" interface="9"/>
 <router exporter="10.2.2.3" interface="9"/>
 <router exporter="10.2.2.2" interface="12"/>
 <router exporter="10.2.2.3" interface="12"/>
 <router exporter="10.2.2.2" interface="13"/>
 <router exporter="10.2.2.3" interface="13"/>
 </routergroup>
 <routergroup name="ROUTERGROUP1-LINE1">
 <router exporter="10.2.2.2" interface="9"/>
 <router exporter="10.2.2.3" interface="9"/>
 </routergroup>
 <routergroup name="ROUTERGROUP1-LINE2">
 <router exporter="10.2.2.2" interface="12"/>
 <router exporter="10.2.2.3" interface="12"/>
 </routergroup>
 <routergroup name="ROUTERGROUP1-LINE3">
 <router exporter="10.2.2.2" interface="13"/>
 <router exporter="10.2.2.3" interface="13"/>
 </routergroup>
 </routergroups>
 <directions>
 <direction name="ROUTERS1" routergroup="ROUTERGROUP1">
 <set name="Common Services"/>
 </direction>
 <direction name="ROUTERS1-LINE1" routergroup="ROUTERGROUP1-LINE1">
 <set name="Common Services"/>
 </direction>
 <direction name="ROUTERS1-LINE2" routergroup="ROUTERGROUP1-LINE2">
 <set name="Common Services"/>
 </direction>
 <direction name="ROUTERS1-LINE3" routergroup="ROUTERGROUP1-LINE3">
 <set name="Common Services"/>
 </direction>
 </directions>
 <rrddir>/var/flows/report/rrds</rrddir>
 <scoredir>/var/flows/score</scoredir>
 <sampletime>300</sampletime>
</config>

In network monitoring architectures where multiple exporters
creates redundancies in flow reporting, like 2 stub routers
reporting both flows of the same traffic of between the stub sites,
in defining an 'edge' consisting of a routergroup of all
routerinterfaces of the routers on the 'edge', this can solve the
redundancy problem. In assuming that no network traffic passes
the 'edge' more than once you can group routers and avoid double
counting of flows. You can combine both from/to sites/subnets
and routergroups.

Running FlowScan and JKFlow

When you run FlowScan for the first time it will find the flow
files already created by flow-capture in the /var/flows/flows
directory and starts processing them. When no files are found it
will wait 30 seconds and tries again. On startup several
initialization messages are dumped by JKFlow, which can help in
troubleshooting. When a flow file is processed it will dump the
values in directories containing RRDTool files (and creates those
when they aren't created yet.)

FlowScan and JKFlow.pm running

The results are displayed with a CGI-script called JKGrapher.pl
on a webserver, like Apache. You select first the directions on
which you want to report, and select the services on the
directions. Here is a screenshot displaying the JKGrapher.pl CGI-
frontend.

JKGrapher.pl CGI-Frontend

After pressing “Generate graph” a RRD graph appear. This graph
is created real-time and the URL used to obtain this graph can be
copied into a HTML web page for easy retrieval. Because the
URL represents a single image, you can link these in as images.

Example JKFlow Graph
Under the hood of JKFlow

FlowScan calls the JKFlow report module during 3 moments:

� at startup the module parses JKFlow.xml and initialize the
counter data structures.

� for every flow the 'wanted' function updates the counters of
the matching directions

� after processing the flowfile, all RRDTool files in the
directories are updated using the counters of corresponding
directions.

JKFlow is not only very flexible but also efficient in flow
processing. The wanted function, responsible for processing every
flow, is critical in this aspect. The following picture outlines the
flow processing structure of the wanted function of Jkflow:

This picture outlines the internal working of the JKFlow flow
processing and gives you an insight to it's configuration. A mayor
part in understanding lies in to understanding the difference
between the logic to split traffic to directions, and the logic
measuring services, protocols, tos, total, ftp, etc.. and
scoreboarding inside the directions. This reflects directly in the
configuration rules where services, protocols, tos, total, ftp, etc...
and other elements are always defined inside directions, possible
with aid of definsets and sets. Sets are templates of

services/protocols/tos/total/ftp/etc...

To lookup these directions as fast as possible, I have programmed
Countdirections which calls the countPackets on basis of
source/destination IP-address to subnets to directions Net::Patricia
matching. This works as described for source/destination subnets.
Combining this functionality with the matching of flows on basis
of routers, interfaces, autonomous systems too is however not
easy. Introducing such matching code into source/destination
subnets matching code would lay a heavy burden on the
performance of the code, so another way is implemented. In the
picture below there is a second layer between the
“Countdirections” and the “CountPackets”, consisting out of
“Countfunction_*” functions. These functions will process every
matched direction on further constraints defined within every
direction.

This is not actually not complete: what to do when no
source/destination subnets/or sites where defined within a
direction? In the wanted function is this solved by evaluating
these directions using these Countfunction_* functions direction
outside Countdirections. So the whole picture consists of Wanted
calling Countdirections calling Countfunctions calling
Countpackets, Wanted calling Countfunctions calling
Countpackets, Wanted calling Countdirections calling
CountPackets and at last Wanted calling CountPackets. The
whole structure on what has to call what is defined at startup
using autogeneration of the wanted code, and registrate the
references of the correct Countfunction on the directions. The
Countfunctions at last calls the Countpackets which are also
autogenerated on startup for every direction, so asymmetric
configurations with directions with just </all> and others with lots
of services, protocols, tos, etc... are processed as fast as possible.

These measures explains why JKFlow, while so flexible, is still
very efficient in processing.

Conclusion
While JKFlow in size isn't comparable with other tools, it adds
lots of flexibility to FlowScan. This tool provides a cheap and
flexible NetFlow monitoring solution.

Links
JKFlow: http://jkflow.sourceforge.net
JKFlow Demo: http://jkflow.sourceforge.net/jkflowdemo.html
JKFlow Manual: http://jkflow.sourceforge.net/eindwerk.pdf
FlowScan: http://www.caida.org/tools/utilities/FlowScan/
RRDTool: http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/
Software: http://www.switch.ch/tf-tant/floma/software.html

Written by: Jurgen Kobierczynski
Email: jurgen.kobierczynski@telenet.be

